10007 measured reflections

 $R_{\rm int} = 0.067$

3572 independent reflections 1680 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl 4-[4-(dimethylamino)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5dicarboxylate

Xiao-Ling Ji,^a Wang-Bin Sun,^a Qian Zhang,^a Yan-Ping Cao^b and Ming-Sheng Bai^c*

^aCollege of Life Science, Yulin University, Yulin, Shaanxi 719000, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, People's Republic of China, and ^cCollege of Life Science, Ningxia University, Yinchuan 750021, People's Republic of China Correspondence e-mail: baiming.s@163.com

Received 3 January 2010; accepted 28 January 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.061; wR factor = 0.202; data-to-parameter ratio = 13.2.

In the title compound, $C_{21}H_{28}N_2O_4$, the dihydropyridine ring adopts a flattened boat conformation. The mean plane of the dihydropyridine ring and the attached benzene ring form a dihedral angle of 85.1 (1) Å. One of two ethyl fragments is disordered between two conformations in a 0.67 (4):0.33 (4) ratio. In the crystal structure, molecules related by translation along the *a* axis are linked into chains *via* intermolecular N– H···O hydrogen bonds.

Related literature

For the pharmacological activity of compounds containing substituted 1,4-dihydropyridine ring systems, see: Triggle *et al.*(1980); Henry (2004). For a related structure, see Sun *et al.* (2006).

Experimental

Crystal data

$C_{21}H_{28}N_2O_4$	V = 2030.3 (3) Å ³
$M_r = 372.45$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.5023 (7) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 14.9797 (14) Å	$T = 298 { m K}$
c = 18.0691 (19) Å	$0.49 \times 0.48 \times 0.47$ mm
$\beta = 91.021 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.960, \ T_{\max} = 0.961$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	270 parameters
$vR(F^2) = 0.202$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
3572 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N1-H1\cdots O4^{i}$ 0.862.183.036 (4)173

Symmetry code: (i) x + 1, y, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the support of the National Natural Science Foundation of the College of Life Science, Ningxia University (grant No. 081040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2687).

References

- Henry, G. D. (2004). Tetrahedron, 60, 6043-6061.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sun, F.-X., Zhao, H. & Du, H.-X. (2006). Acta Cryst. E62, 05448-05449.
- Triggle, A. M., Shefter, E. J. & Triggle, D. (1980). J. Med. Chem. 23, 1442-1445.

Acta Cryst. (2010). E66, o519 [doi:10.1107/S1600536810003508]

Diethyl 4-[4-(dimethylamino)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

X.-L. Ji, W.-B. Sun, Q. Zhang, Y.-P. Cao and M.-S. Bai

Comment

Substituted 1,4-dihydropyridine ring system exhibit diverse pharmacological activities (Triggle *et al.*, 1980). In addition, several of these compounds were discovered to be highly selective ligands for adenosine receptors, which were recently recognized as potential targets for the development of new drugs for the treatment of Parkinson's disease, hypoxia/ischemia, asthma, kidney disease, epilepsy, and cancer (Henry *et al.*, 2004). In continuation of our ongoing program directed to the development of pyridine chemistry, we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compound ethyl 5-carboxy-2,6-dimethyl-4-(4-nitrophenyl) -1,4-dihydropyridine-3-carboxylate (Sun *et al.*, 2006). The carboxylate and methyl groups lie to the each side of the dihydropyridine ring. The dihedral angle between the planes C2/C3/C4 and C1/N1/C5 is 36.9 (3) Å. The dihydropyridine ring adopts a flattened boat conformation and the plane of the base of the boat (C1/C2/C4/C5) forms a dihedral angle of 83.73 (13) Å with the benzene ring.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [100].

Experimental

4-(N, N-dimethyl)benzaldehyde (10.0 mmol), 20 ml methanol, ethyl acetoacetate (20 mmol) and NH₄HCO₃ (6 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystalized from methanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for $C_{21}H_{28}N_2O_4$: C 67.72, H 7.58, N 7.52%; found: C 67.82, H 7.73, N 7.43%.

Refinement

All H atoms were placed in geometrically idealized positions (C-H of methyl distances is 0.96 Å, C-H of methylene distances is 0.97 Å, C-H of methine distances is 0.98 Å and aromatic C-H distances is 0.93 Å, N-H distances is 0.86 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2 \text{ U-}1.5_{eq}(C, N)$. Atoms C₈, C₉ were treated as disordered between two positions, with refined occupancies of 0.33 (4) and 0.67 (4).

Figures

Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids. Only major parts of disordered atoms are shown. H atoms omitted for clarity.

Diethyl 4-[4-(dimethylamino)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

Crystal data

F(000) = 800
$D_{\rm x} = 1.218 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1665 reflections
$\theta = 2.6 - 20.9^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$
T = 298 K
Needle, red
$0.49\times0.48\times0.47~mm$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3572 independent reflections
Radiation source: fine-focus sealed tube	1680 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.067$
phi and ω scans	$\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 1.8^\circ$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.960, \ T_{\max} = 0.961$	$k = -11 \rightarrow 17$
10007 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.202$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0653P)^2 + 1.4769P]$ where $P = (F_o^2 + 2F_c^2)/3$
3572 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$

270 parameters	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N1	1.0562 (4)	0.1513 (2)	1.06111 (16)	0.0535 (9)	
H1	1.1638	0.1618	1.0758	0.064*	
N2	0.6296 (5)	0.5330 (2)	0.8972 (2)	0.0785 (11)	
01	0.6518 (4)	0.0907 (2)	0.86907 (16)	0.0810 (10)	
O2	0.9341 (5)	0.0681 (3)	0.84207 (18)	0.1139 (14)	
O3	0.6311 (3)	0.1834 (2)	1.20424 (14)	0.0693 (9)	
O4	0.4439 (3)	0.1727 (2)	1.10883 (14)	0.0679 (9)	
C1	1.0290 (5)	0.1244 (2)	0.9891 (2)	0.0495 (10)	
C2	0.8620 (5)	0.1274 (2)	0.96009 (18)	0.0464 (9)	
C3	0.7131 (5)	0.1728 (2)	1.00311 (17)	0.0436 (9)	
Н3	0.6020	0.1402	0.9931	0.052*	
C4	0.7524 (4)	0.1684 (2)	1.08551 (17)	0.0414 (9)	
C5	0.9222 (5)	0.1625 (3)	1.11124 (18)	0.0474 (9)	
C6	1.1942 (5)	0.0920 (3)	0.9527 (2)	0.0677 (12)	
H6A	1.1736	0.0334	0.9327	0.102*	
H6B	1.2902	0.0896	0.9885	0.102*	
H6C	1.2250	0.1321	0.9135	0.102*	
C7	0.8257 (7)	0.0925 (3)	0.8863 (2)	0.0648 (12)	
C8	0.624 (3)	0.0697 (13)	0.7887 (8)	0.077 (4)	0.67 (4)
H8A	0.6810	0.1141	0.7582	0.092*	0.67 (4)
H8B	0.6723	0.0115	0.7771	0.092*	0.67 (4)
С9	0.428 (2)	0.0708 (15)	0.7756 (8)	0.095 (5)	0.67 (4)
H9A	0.3732	0.0268	0.8065	0.142*	0.67 (4)
H9B	0.4022	0.0574	0.7246	0.142*	0.67 (4)
Н9С	0.3820	0.1288	0.7873	0.142*	0.67 (4)
C8'	0.557 (5)	0.036 (2)	0.814 (2)	0.079 (9)	0.33 (4)
H8'1	0.4525	0.0074	0.8345	0.094*	0.33 (4)
H8'2	0.6338	-0.0093	0.7929	0.094*	0.33 (4)
C9'	0.508 (6)	0.107 (3)	0.7585 (16)	0.098 (10)	0.33 (4)
H9'1	0.4027	0.1381	0.7745	0.146*	0.33 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H9'2	0.4844	0.0805	0.7111	0.146*	0.33 (4)
Н9'3	0.6041	0.1491	0.7547	0.146*	0.33 (4)
C10	0.6878 (4)	0.2688 (2)	0.97650 (17)	0.0420 (9)	
C11	0.7898 (5)	0.3382 (3)	1.0039 (2)	0.0577 (11)	
H11	0.8738	0.3263	1.0411	0.069*	
C12	0.7721 (5)	0.4242 (3)	0.9787 (2)	0.0619 (11)	
H12	0.8445	0.4686	0.9990	0.074*	
C13	0.6486 (5)	0.4466 (3)	0.9232 (2)	0.0553 (10)	
C14	0.5446 (5)	0.3772 (3)	0.8956 (2)	0.0629 (11)	
H14	0.4592	0.3888	0.8589	0.076*	
C15	0.5659 (5)	0.2911 (3)	0.9218 (2)	0.0584 (11)	
H15	0.4947	0.2462	0.9015	0.070*	
C16	0.7323 (7)	0.6039 (3)	0.9282 (3)	0.0911 (16)	
H16A	0.7142	0.6064	0.9806	0.137*	
H16B	0.6959	0.6593	0.9060	0.137*	
H16C	0.8563	0.5937	0.9189	0.137*	
C17	0.4833 (7)	0.5557 (3)	0.8486 (3)	0.0834 (15)	
H17A	0.4969	0.5257	0.8021	0.125*	
H17B	0.4815	0.6190	0.8407	0.125*	
H17C	0.3735	0.5374	0.8705	0.125*	
C18	0.5961 (5)	0.1746 (2)	1.1321 (2)	0.0467 (9)	
C19	0.4839 (5)	0.1922 (3)	1.2541 (2)	0.0735 (14)	
H19A	0.3974	0.1452	1.2448	0.088*	
H19B	0.4253	0.2493	1.2466	0.088*	
C20	0.5528 (7)	0.1859 (4)	1.3293 (3)	0.113 (2)	
H20A	0.6072	0.1285	1.3367	0.170*	
H20B	0.4570	0.1932	1.3632	0.170*	
H20C	0.6400	0.2319	1.3377	0.170*	
C21	0.9918 (5)	0.1636 (3)	1.1893 (2)	0.0708 (13)	
H21A	0.9342	0.2103	1.2162	0.106*	
H21B	1.1181	0.1739	1.1895	0.106*	
H21C	0.9677	0.1071	1.2123	0.106*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0339 (17)	0.075 (2)	0.0513 (19)	-0.0034 (15)	0.0033 (15)	-0.0005 (16)
N2	0.089 (3)	0.055 (2)	0.091 (3)	-0.002 (2)	-0.019 (2)	0.017 (2)
O1	0.085 (2)	0.086 (2)	0.071 (2)	0.0062 (18)	-0.0216 (17)	-0.0345 (17)
O2	0.108 (3)	0.169 (4)	0.065 (2)	0.033 (3)	0.006 (2)	-0.044 (2)
O3	0.0432 (16)	0.118 (3)	0.0468 (17)	0.0008 (15)	0.0103 (13)	-0.0104 (15)
O4	0.0372 (16)	0.109 (2)	0.0575 (17)	0.0035 (15)	0.0019 (13)	0.0050 (15)
C1	0.043 (2)	0.056 (2)	0.050 (2)	-0.0050 (19)	0.0102 (18)	0.0038 (19)
C2	0.051 (2)	0.048 (2)	0.041 (2)	-0.0027 (18)	0.0047 (18)	-0.0003 (17)
C3	0.039 (2)	0.053 (2)	0.0386 (19)	-0.0056 (17)	0.0000 (16)	0.0004 (17)
C4	0.037 (2)	0.050 (2)	0.0371 (19)	0.0003 (17)	0.0017 (16)	0.0013 (16)
C5	0.040 (2)	0.060 (3)	0.043 (2)	0.0017 (18)	0.0032 (18)	0.0021 (18)
C6	0.056 (3)	0.084 (3)	0.064 (3)	0.004 (2)	0.020 (2)	-0.003 (2)

C7	0.070 (3)	0.070 (3)	0.054 (3)	0.007 (2)	-0.007 (2)	-0.009 (2)
C8	0.081 (10)	0.092 (9)	0.058 (7)	-0.008 (6)	-0.009 (6)	-0.029 (6)
C9	0.079 (10)	0.134 (13)	0.071 (7)	-0.020(7)	-0.011 (6)	-0.032 (7)
C8'	0.085 (18)	0.079 (17)	0.071 (16)	-0.012 (11)	-0.005 (13)	-0.023 (13)
C9'	0.10 (3)	0.12 (2)	0.075 (14)	-0.004 (16)	-0.022 (15)	0.003 (14)
C10	0.041 (2)	0.051 (2)	0.0346 (19)	-0.0020 (18)	0.0004 (16)	0.0033 (16)
C11	0.054 (2)	0.059 (3)	0.059 (2)	-0.006 (2)	-0.0139 (19)	0.009 (2)
C12	0.063 (3)	0.055 (3)	0.066 (3)	-0.012 (2)	-0.016 (2)	0.006 (2)
C13	0.058 (3)	0.054 (3)	0.053 (2)	0.003 (2)	0.002 (2)	0.010 (2)
C14	0.061 (3)	0.066 (3)	0.061 (3)	0.000 (2)	-0.018 (2)	0.010 (2)
C15	0.062 (3)	0.056 (3)	0.056 (2)	-0.005 (2)	-0.018 (2)	0.002 (2)
C16	0.106 (4)	0.065 (3)	0.102 (4)	-0.010 (3)	-0.005 (3)	0.013 (3)
C17	0.100 (4)	0.069 (3)	0.081 (3)	0.014 (3)	-0.007 (3)	0.019 (3)
C18	0.041 (2)	0.057 (3)	0.041 (2)	0.0039 (18)	0.0010 (18)	0.0046 (18)
C19	0.048 (3)	0.113 (4)	0.059 (3)	0.006 (2)	0.018 (2)	-0.006 (2)
C20	0.095 (4)	0.186 (7)	0.059 (3)	0.004 (4)	0.022 (3)	-0.018 (3)
C21	0.048 (2)	0.112 (4)	0.052 (2)	0.013 (2)	-0.005 (2)	-0.001 (2)

Geometric parameters (Å, °)

N1-C1	1.374 (4)	C8'—C9'	1.51 (7)
N1—C5	1.375 (4)	C8'—H8'1	0.9700
N1—H1	0.8600	C8'—H8'2	0.9700
N2—C13	1.384 (5)	С9'—Н9'1	0.9600
N2-C16	1.421 (5)	C9'—H9'2	0.9600
N2—C17	1.434 (5)	С9'—Н9'3	0.9600
O1—C7	1.336 (5)	C10—C15	1.376 (5)
O1—C8'	1.47 (2)	C10—C11	1.377 (5)
O1—C8	1.497 (11)	C11—C12	1.372 (5)
O2—C7	1.208 (5)	C11—H11	0.9300
O3—C18	1.332 (4)	C12—C13	1.393 (5)
O3—C19	1.444 (4)	C12—H12	0.9300
O4—C18	1.210 (4)	C13—C14	1.388 (5)
C1—C2	1.350 (5)	C14—C15	1.381 (5)
C1—C6	1.495 (5)	C14—H14	0.9300
C2—C7	1.453 (5)	C15—H15	0.9300
C2—C3	1.531 (5)	C16—H16A	0.9600
C3—C4	1.514 (4)	C16—H16B	0.9600
C3—C10	1.528 (5)	C16—H16C	0.9600
С3—Н3	0.9800	C17—H17A	0.9600
C4—C5	1.352 (5)	C17—H17B	0.9600
C4—C18	1.459 (5)	C17—H17C	0.9600
C5—C21	1.495 (5)	C19—C20	1.447 (6)
С6—Н6А	0.9600	C19—H19A	0.9700
С6—Н6В	0.9600	C19—H19B	0.9700
С6—Н6С	0.9600	C20—H20A	0.9600
С8—С9	1.48 (3)	C20—H20B	0.9600
C8—H8A	0.9700	C20—H20C	0.9600
C8—H8B	0.9700	C21—H21A	0.9600

С9—Н9А	0.9600	C21—H21B	0.9600
С9—Н9В	0.9600	C21—H21C	0.9600
С9—Н9С	0.9600		
C1—N1—C5	124.2 (3)	Н9'1—С9'—Н9'3	109.5
C1—N1—H1	117.9	Н9'2—С9'—Н9'3	109.5
C5—N1—H1	117.9	C15—C10—C11	115.7 (3)
C13—N2—C16	120.9 (4)	C15—C10—C3	122.1 (3)
C13—N2—C17	120.2 (4)	C11—C10—C3	122.2 (3)
C16—N2—C17	117.9 (4)	C12—C11—C10	122.6 (4)
C7—O1—C8'	129.0 (13)	C12—C11—H11	118.7
C7—O1—C8	110.6 (8)	С10—С11—Н11	118.7
C8'—O1—C8	33.4 (12)	C11—C12—C13	121.7 (4)
C18—O3—C19	118.7 (3)	С11—С12—Н12	119.2
C2—C1—N1	118.6 (3)	С13—С12—Н12	119.2
C2—C1—C6	127.7 (4)	N2-C13-C14	121.7 (4)
N1-C1-C6	113.7 (3)	N2-C13-C12	122.2 (4)
C1—C2—C7	120.1 (4)	C14—C13—C12	116.1 (4)
C1 - C2 - C3	1199(3)	C15-C14-C13	1210(4)
C7 - C2 - C3	120.0 (3)	C15-C14-H14	119.5
C4-C3-C10	111.8 (3)	C13—C14—H14	119.5
C4-C3-C2	110.4(3)	C10-C15-C14	122.9 (4)
$C_{10} - C_{3} - C_{2}$	110.7(3)	C10-C15-H15	118.5
C4 - C3 - H3	108.1	C_{14} C_{15} H_{15}	118.5
C10-C3-H3	108.1	N2-C16-H16A	109.5
C_{2} C_{3} H_{3}	108.1	N2C16H16B	109.5
$C_{2} = C_{3} = C_{13}$	124.6 (3)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
$C_{5}^{}C_{4}^{}C_{3}^{}$	124.0(3) 120.5(3)	N2_C16_H16C	109.5
$C_{18} - C_{4} - C_{3}$	120.3(3) 114.9(3)	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
$C_{4} = C_{5} = N_{1}$	114.5 (3)	H16B_C16_H16C	109.5
$C_{4} = C_{5} = C_{21}$	110.5(3)	N2 - C17 - H17A	109.5
N1 - C5 - C21	129.4(3) 1121(3)	N2_C17_H17R	109.5
$C_1 = C_2 = C_2 T$	100.5	H17A C17 H17B	109.5
$C_1 = C_0 = H_0 R$	109.5	$\frac{117}{4} = \frac{17}{4} = \frac{117}{6}$	109.5
	109.5		109.5
10A - C0 - 10B	109.5	H17P C17 H17C	109.5
	109.5	$n_1/b_{}c_1/-n_1/c$	109.5 120.7(2)
	109.5	04 - 018 - 03	120.7(3) 124.1(3)
$\begin{array}{c} \text{Hob} \\ $	109.3	04 - 018 - 04	124.1(3) 115.1(2)
02 - 07 - 01	120.4(4)	03 - 018 - 04	113.1(3)
02 - C7 - C2	120.8 (4)	03 = 019 = 020	108.4 (4)
01 - 07 - 02	112.8 (4)	C20 C10 H10A	110.0
$C_{9} = C_{8} = 01$	100.0 (14)	C20-C19-H19A	110.0
C_{9} C_{8} H_{8} A	110.5	C20 C10 H10P	110.0
$O_1 = C_8 = H_8 A$	110.5	C20-C19-H19B	110.0
$C_{2} = C_{2} = H_{2}B_{2}$	110.5	H19A—U19—H19B	108.4
	110.5	C19—C20—H20A	109.5
$H\delta A = C\delta = H\delta B$	108.7	U19—U20—H20B	109.5
$O1 = C8^{\circ} = C9^{\circ}$	99 (3) 111 0	H20A—C20—H20B	109.5
	111.9	C19—C20—H20C	109.5
С9'—С8'—Н8'1	111.9	H20A—C20—H20C	109.5

O1—C8'—H8'2	111.9		H20B-C20-H20C		109.5
C9'—C8'—H8'2	111.9		C5-C21-H21A		109.5
H8'1—C8'—H8'2	109.6		C5—C21—H21B		109.5
С8'—С9'—Н9'1	109.5		H21A—C21—H21B		109.5
С8'—С9'—Н9'2	109.5		C5-C21-H21C		109.5
H9'1—C9'—H9'2	109.5		H21A—C21—H21C		109.5
С8'—С9'—Н9'3	109.5		H21B—C21—H21C		109.5
Hydrogen-bond geometry (Å,	°)				
D—H··· A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O4 ⁱ		0.86	2.18	3.036 (4)	173

Symmetry codes: (i) x+1, y, z.

